Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

8-Quinolyl benzoate

Gang Lei

Department of Chemistry, China West Normal University, Nanchong 637002, People's Republic of China

Correspondence e-mail: leigang307@yahoo.com.cn

Key indicators

Single-crystal X-ray study $T=153~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.002~\mathrm{\mathring{A}}$ R factor = 0.041 wR factor = 0.124 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound, $C_{16}H_{11}NO_2$, the ester group is twisted away from the quinoline benzene ring by 77.32 (4)°. Molecules are linked into centrosymmetric $R_2^2(16)$ dimers by $C-H\cdots O$ hydrogen bonds.

Received 18 September 2006 Accepted 20 September 2006

Comment

8-Hydroxyquinoline benzoates were developed as a new set of derivatives for highly sensitive fluorescent chemosensors for transition metal ions (Zhang *et al.*, 2005). We report here the crystal structure of the title compound, (I).

Bond lengths and angles in (I) are normal. The quinoline ring system is planar with a maximum deviation of 0.011 (1) Å for atom N1. As a result of steric effects, the substituent group at atom C8 is twisted away from the plane of the quinoline ring system (Fig. 1). The O1/O2/C8/C10 and C4–C9 planes form a dihedral angle of 77.32 (4)°. The O1/O2/C8/C10 and C11–C16 planes are inclined at an angle of 4.55 (9)°.

The molecules are linked into centrosymmetric $R_2^2(16)$ dimers by C-H···O hydrogen bonds (Table 1). The dimers are stacked along the a axis with weak π - π interactions between the quinoline ring systems, with $Cg1 \cdot \cdot \cdot Cg2^{ii} = Cg2 \cdot \cdot \cdot Cg1^{ii} = 3.7020$ (7) Å [symmetry code: (ii) 2 - x, 1 - y, 1 - z], where Cg1 and Cg2 are the centroids of rings N1/C1-C4/C9 and C4-C9, respectively.

Experimental

Compound (I) was prepared according to the reported precedure of Zhang *et al.* (2005). Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from ethyl acetate.

Crystal data

 $C_{16}H_{11}NO_2$ Z=4 $D_x=1.358 \text{ Mg m}^{-3}$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation $\mu=0.09 \text{ mm}^{-1}$ b=8.5401 (4) Å T=153 (2) K Block, yellow $\beta=92.798 \text{ (1)}^{\circ}$ $0.45\times0.17\times0.16 \text{ mm}$ $V=1219.57 \text{ (10) Å}^3$

© 2006 International Union of Crystallography All rights reserved

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans

Absorption correction: none 11407 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.125$ S = 1.012784 reflections 173 parameters H-atom parameters constrained 2784 independent reflections 2270 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$ $\theta_{\rm max} = 27.5^{\circ}$

$$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0826P)^{2} + 0.1478P]$$

$$where P = (F_{o}^{2} + 2F_{c}^{2})/3$$

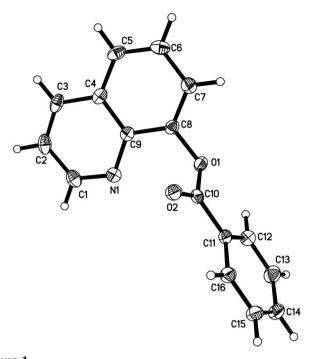
$$(\Delta/\sigma)_{max} = 0.001$$

$$\Delta\rho_{max} = 0.31 \text{ e Å}^{-3}$$

$$\Delta\rho_{min} = -0.24 \text{ e Å}^{-3}$$
Extinction correction: SHELXL97

Extinction coefficient: 0.013 (3)

Table 1 Hydrogen-bond geometry (Å, °).


D $ H$ $\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
C3−H3···O2 ⁱ	0.95	2.55	3.4128 (15)	151

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

All H atoms were placed in calculated positions and refined using a riding model, with C-H = 0.95 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$.

Data collection: *RAPID-AUTO* (Rigaku/MSC, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXL97*.

The author thanks the Centre for Testing and Analysis, Cheng Du Branch, Chinese Academy of Sciences, for analytical support.

Figure 1The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Rigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Zhang, H., Han, L. F., Zachariasse, K. A. & Jiang, Y. B. (2005). Org. Lett. 7, 4217–4220.